Jakou silou napíná nabitá kulička nit

Úloha číslo: 736

V homogenním elektrickém poli o intenzitě 106 V m−1 visí na niti kulička o hmotnosti 2 g a nabitá nábojem 10 nC. Vektor intenzity svírá se svislicí úhel 30°.

Určete, jak velkou silou je napínána nit.

  • Nápověda

    Nakreslete si obrázek sil působících na kuličku. Co pro tyto síly platí, jestliže je kulička v klidu?

    K výpočtu tahové síly využijte kosinové věty.

  • Nápověda: Rozdělení úlohy

    Uvědomte si, že jsou dvě možnosti orientace vektoru intenzity. Úlohu vypočítejte pro každý případ zvlášť.

  • Rozbor

    Na kuličku zavěšenou na vlákně v elektrickém poli působí tíhová síla, tahová síla vlákna a elektrická síla. Protože je kulička v klidu, musí být výslednice těchto sil rovna nule.

    Směr elektrické síly je stejný jako směr vektoru intenzity elektrického pole. Ten může být orientován dvěma způsoby (viz obrázek).

    Dva případy orientace vektoru intenzity

    Úlohu tedy rozdělíme na dva případy. V obou případech vypočítáme velikost tahové síly z kosinové věty.

  • Řešení: Obrázek situace a rozdělení úlohy

    Intenzita může být orientována dvěma způsoby (viz obrázek). V obou případech na kuličku působí tíhová síla \(\vec{F}_G\), elektrická síla \(\vec{F}_e\) a tahová síla niti \(\vec{F}_T\), jejíž velikost hledáme.

    Dvě možnosti směru intenzity

    Celou úlohu tedy rozdělíme na dva případy.

  • Řešení: První případ

    Obrázek celé situace

    Na kuličku působí tíhová síla \(\vec{F}_G\), elektrická síla \(\vec{F}_e\) a tahová síla niti \(\vec{F}_T\), jejíž velikost hledáme.

    V rovnováze musí platit, že výsledná síla působící na kuličku je nulová. To znamená, že tahová síla niti musí mít stejnou velikost a opačný směr vůči výslednici tíhové a elektrické síly.

    Velikost této výslednice určíme pomocí kosinové věty ze žlutého trojúhelníku. (Znění kosinové věty naleznete v první nápovědě.)

    \[F_{v1}^2\,=\,F_G^2\,+\,F_e^2\,-\,2 F_G F_e \cos \beta \tag{1}\]

    Velikost tíhové a elektrické síly získáme pomocí následujících vztahů

    \[F_G\,=\,mg\,, \hspace{30px} F_e\,=\,QE.\]

     

    Pro úhly α a β platí: α + β = 180° (viz obrázek po zvětšení). Velikost úhlu β vypočítáme tedy jako: β = 180° − α.

    Vyjádření všech veličin dosadíme do vzorce (1).

    \[F_{v1}^2\,=\,m^2 g^2\,+\,Q^2 E^2\,-\,2 mgQE \cos\left(180^\circ - \alpha\right) \]

    Pro funkci kosinus platí: cos(180° − α) = −cosα, můžeme tak vzorec zjednodušit na

    \[F_{v1}^2\,=\,m^2 g^2\,+\,Q^2 E^2\,+\,2 mgQE \cos\alpha .\]

    Nyní už jen vyjádříme velikost výsledné síly (a tedy i síly tahové)

    \[F_{T1}\,=\,F_{v1}\,=\,\sqrt{m^2 g^2\,+\,Q^2 E^2\,+\,2 mgQE \cos \alpha }\,.\]
  • Řešení: Druhý případ

    Obrázek celé situace

    Postup řešení je velmi podobný, liší se pouze velikostí dosazeného úhlu.

    Velikost výslednice tíhové a elektrické síly získáme opět pomocí kosinové věty ze žlutého trojúhelníku.

    \[F_{v2}^2\,=\,F_G^2\,+\,F_e^2\,-\,2 F_G F_e \cos \alpha \]

    Stejně jako v předchozím případě dosadíme velikost tíhové a elektrické síly z následujících vzorců FG = mg, Fe = QE

    \[F_{v2}^2\,=\,m^2 g^2\,+\,Q^2 E^2\,-\,2 mgQE \cos\alpha .\]

    Nyní už jen vyjádříme velikost výsledné síly (a tedy i síly tahové)

    \[F_{T2}\,=\,F_{v2}\,=\,\sqrt{m^2 g^2\,+\,Q^2 E^2\,-\,2 mgQE \cos\alpha}.\]
  • Zápis a číselný výpočet

    E = 106 V m−1 velikost intenzity elektrického pole
    m = 2 g = 2·10−3 hmotnost kuličky
    α = 30° úhel, který svírá vektor intenzity se svislicí
    Q = 10 nC = 1·10−8 C náboj kuličky
    Z tabulek
    g = 9,81 m s−2tíhové zrychlení

    \[F_{T1}\,=\,\sqrt{m^2 g^2\,+\,Q^2 E^2\,+\,2 mgQE \cos\alpha} \] \[F_{T1} =\sqrt{4{\cdot} 10^{-6} \cdot 9{,}81^2\,+\,10^{-16} \cdot10^{12}+2 {\cdot} 2\cdot 10^{-3} \cdot 9{,}81{\cdot} 10^{-8}\cdot10^6 \cdot \cos 30^\circ}\] \[F_{T1}\,\dot=\,2{,}87{\cdot}10^{-2}\,\mathrm{N}\,\dot=\,29\,\mathrm{mN}\]

     

    \[F_{T2}\,=\,\sqrt{m^2 g^2\,+\,Q^2 E^2\,-\,2 mgQE \cos\alpha} \] \[F_{T2} =\sqrt{4{\cdot} 10^{-6} \cdot 9{,}81^2\,+\,10^{-16} \cdot10^{12}-2 {\cdot} 2\cdot 10^{-3} \cdot 9{,}81{\cdot} 10^{-8}\cdot10^6 \cdot \cos 30^\circ}\] \[F_{T1}\,\dot=\,1{,}2{\cdot}10^{-2}\,\mathrm{N}\,\dot=\,12\,\mathrm{mN}\]
  • Odpověď

    V prvním případě bude nit napínána silou

    \[F_{T1}\,=\,\sqrt{m^2 g^2\,+\,Q^2 E^2\,+\,2 mgQE \cos\alpha}\,\dot=\,29\,\mathrm{mN}\,,\]

    ve druhém silou

    \[F_{T2}\,=\,\sqrt{m^2 g^2\,+\,Q^2 E^2\,-\,2 mgQE \cos\alpha}\,\dot=\,12\,\mathrm{mN}\,.\]
Úroveň náročnosti: Úloha vhodná pro studenty střední školy
K řešení úlohy je třeba vyhledat nějaké údaje.
Původní zdroj: Kohout, J. (2010). Studijní materiály ke cvičením z Elektřiny a
magnetismu. Interní materiál, Plzeň.
×Původní zdroj: Kohout, J. (2010). Studijní materiály ke cvičením z Elektřiny a magnetismu. Interní materiál, Plzeň.
Zaslat komentář k úloze