Počítání s barometrem

Úloha číslo: 998

Princip funkce barometru je tento: úzká skleněná, na jednom konci zatavená trubice délky 1 metr je částečně naplněna rtutí a ponořena svisle do misky rovněž naplněné rtutí.

Ráno, při teplotě 0 °C, sahá sloupec rtuti v barometru do výšky h. V předpovědi počasí bylo právě uvedeno, že atmosférický tlak je 99,7 kPa a tlaková tendence je setrvalá (tj. atmosférický tlak se během experimentu nemění).

Později sluníčko ohřeje povrch Země, od něhož se následně ohřeje i vzduch (a tedy i rtuť) na 30 °C. Jak se změní výška rtuťového sloupce v barometru?

Hustota rtuti při 0 °C je 13 595 kg·m−3 a při 30 °C je 13 521 kg·m−3.

Schéma fungování rtuťového barometru
  • Zápis

    pa = 99,7 kPa = 99,7·103 Pa atmosférický tlak
    ρ0 = 13 595 kg·m−3 hustota rtuti při 0 °C
    ρ30 = 13 521 kg·m−3 hustota rtuti při 30 °C
    h0 = 1 m délka trubice
    Δh = ? změny výšky rtuťového sloupce
  • Nápověda 1

    Princip fungování rtuťového barometru úzce souvisí s tzv. Toricelliho experimentem. O jaký experiment šlo?

  • Nápověda 2

    Proč se ve výše uvedeném experimentu výška hladiny rtuti v trubici ustálí? (Tj. ani nezůstane na původní úrovni ani neklesne až na úroveň volné hladiny v nádobě?) Jak lze tento fakt využít k měření atmosférického tlaku?
  • Nápověda 3

    Pomocí předcházející úvahy vyjádřete atmosférický tlak jako hydrostatický tlak rtuťového sloupce:
    • při teplotě 0 °C ( ph1),
    • při teplotě 30 °C ( ph2).
  • Nápověda 4

    Jaký je vztah mezi atmosférickým tlakem při teplotě 0 °C a při teplotě 30 °C?

    Jaká bude výška hladiny rtuti při 30 °C ve srovnání s výškou při 0 °C?

  • Nápověda 5

    Ze vztahu (2) vyjádřete původní výšku sloupce h při 0 °C a dosaďte do vztahu (4). Odtud již přímo vyjádřete Δh.

  • Celkové řešení

    Princip měření tlaku rtuťovým barometrem úzce souvisí s tzv. Toricelliho experimentem. Italský fyzik a matematik Evangelista Toricelli provedl experiment, při kterém naplnil přibližně metr dlouhou na jednom konci zatavenou skleněnou trubici rtutí a zataveným koncem vzhůru ji umístil do nádobky se rtutí (viz obrázek v zadání). Hladina rtuti v trubici poklesla a ustálila se na určité výšce.

    Tuto skutečnost vysvětlíme pomocí rovnosti tlaků. Na volnou hladinu rtuti v nádobce působí tlaková síla vzduchu, která nutí rtuť stoupat trubicí vzhůru. Naopak směrem svisle dolů působí na kapalinu (rtuť) v trubici její vlastní tíha. (Tlak rtuťovývh par nad hladinou v trubici neuvažujeme.)

    Při určité výšce rtuťového sloupce dochází k vyrovnání hydrostatického tlaku tohoto sloupce ph a tlaku vzduchu pa (tj. tlaku atmosférického):

    \[p_a\,=\,p_h\,.\tag{1}\]

    Rtuť v takovém případě nemá důvod stoupat ani klesat. Měření atmosférického tlaku lze tedy takto převést na měření tlaku hydrostatického.

    Podle (1) lze atmosférický tlak při teplotě 0 °C vyjádřit jako hydrostatický tlak rtuťového sloupce. Ten má v danou chvíli výšku h, platí tedy:

    \[p_{a1}\,=\,p_{h1}\,=\,h{\rho}_0g\,.\tag{2}\]

    Atmosférický tlak při teplotě 30 °C lze opět vyjádřit jako hydrostatický tlak rtuťového sloupce.

    Platí:

    \[p_{a2}\,=\,p_{h2}\,=\,h_2{\rho}_{30}g\,.\tag{3}\]

    Podle zadání se atmosférický tlak během experimentu nemění, je tedy pa1 = pa2 = pa.

    Platí tedy:

    \[h{\rho}_0g\,=\,h_2{\rho}_{30}g\,.\]

    Protože je hustota rtuti při 30 °C nižší než při 0 °C, bude při 30 °C její hladina výše. Označíme-li rozdíl hladin Δh, platí:

    \[p_{a}\,=\,p_{h2}\,=\,(h+{\Delta}h){\rho}_{30}g\,.\tag{4}\]

    Nyní již vyjádříme rozdíl Δh.

    Ze vztahu (2) plyne:

    \[h\,=\,\frac{p_a}{{\rho_0}g}\,.\tag{5}\]

    Dosazením (5) do (4) dostáváme:

    \[p_a\,=\,(\frac{p_a}{{\rho_0}g}\,+\,{\Delta}h)\rho_{30}g\,=\,\frac{{p_a}{\rho_{30}}}{\rho_0}\,+\,{\Delta}h{\rho_{30}}g\,.\tag{6}\]

    Přímo z (6) pak dostáváme:

    \[{\Delta}h\,=\,\frac{p_a}{\rho_{30}g}(1\,-\,\frac{\rho_{30}}{\rho_0})\,.\]

    Číselně:

    \[{\Delta}h\,=\,\frac{99700}{13521{\cdot}9{,}81}(1\,-\,\frac{13521}{13595})\,\mathrm{m}\,\dot=\,4{,}1\,\mathrm{mm}\,.\]
  • Odpověď

    Výška hladiny rtuťového sloupce v trubici stoupne při zvýšení teploty z 0 °C na 30 °C přibližně o 4,1 mm (za předpokladu neměnného atmosférického tlaku).

Úroveň náročnosti: Obtížnější středoškolská či velmi jednoduchá vysokoškolská úloha
K řešení úlohy je třeba vyhledat nějaké údaje.
Úloha na zjišťování vztahu mezi fakty
Multimediální encyklopedie fyziky
Původní zdroj: Jaroslav Reichl, Sbírka příkladů z fyziky pro 1. ročník, SPŠ
sdělovací techniky Praha
×Původní zdroj: Jaroslav Reichl, Sbírka příkladů z fyziky pro 1. ročník, SPŠ sdělovací techniky Praha
Zaslat komentář k úloze