Přehled základních primitivních funkcí
Úloha číslo: 1257
\(\int{0}dx=c;\,\, c \in R ,\,\, x\in R\)
\(\int{x^b}dx=\frac{x^{b+1}}{b+1}+c;\,\, b,c \in R ,\,\, x \in R\)
\(\int{\frac{1}{x}}dx=\ln{|x|}+c;\,\, c \in R;\,\, x \in R ,\,\, x\ne 0\)
\(\int{e^x}dx={e^x}+c;\,\, c\in R ,\,\, x\in R\)
\(\int{a^x}dx=\frac{a^{x}}{\ln{a}}+c;\,\, a,c, \in R; \,\, a>0;\,\, a \ne 1 ,\,\, x\in R\)
\(\int{\sin{x}}dx=-\cos{x}+c;\,\, c \in R ,\,\, x\in R\)
\(\int{\cos{x}}dx=\sin{x}+c;\,\, b, a,c \in R ,\,\, x\in R\)
\(\int{\frac{1}{\sin^2{x}}}dx=-\mathrm{cotan}\,{x}+c;\,\, c \in R;\,\, x\in \left(n \pi,(n+1)\pi\right)\,\, n \in Z\)
\(\int{\frac{1}{\cos^2{x}}}dx=\tan{x}+c;\,\,,c \in R;\,\, x\in \left(n \frac{\pi}{2},(n+1)\frac{\pi}{2}\right)\,\, n \in Z\)
\(\int{\frac{1}{1+x^2}}dx=\arctan{x}+c=\mathrm{arctg}\,{x}+b;\,\, b,c \in R,\,\, x\in R\)
\(\int{\frac{1}{\sqrt{1-x^2}}}dx=\arcsin{x}+c=-a\arccos{x}+b;\,\, b, c \in R;\,\, x\in (-1{,}1)\)
\(\int{\frac{1}{1-x^2}}dx=\begin{cases} \frac{1}{2}\ln{\frac{1+x}{1-x}}+c;\,\, |x| \ne 1 \\ \mathrm{arctg}\,h{x}+c;\,\, |x|<1 \\ \mathrm{arccotg}\,h{x}+c;\,\, |x|>1 \end{cases};\,\, c \in R\)
\(\int{\sinh{x}}dx=\cosh{x}+c;\,\, c \in R,\,\, x\in R\)
\(\int{\cosh{x}}dx=\sinh{x}+c;\,\, c \in R,\,\, x\in R\)
\(\int{\frac{1}{\sinh^2{x}}}dx=\mathrm{cotan}\,h{x}+c;\,\, c \in R,\,\, x\in R, x\ne 0\)
\(\int{\frac{1}{\cosh^2{x}}}dx=\tanh{x}+c;\,\, c \in R,\,\, x\in R\)
\(\int{\frac{1}{\sqrt{1+x^2}}}dx=\mathrm{argsinh}\,{x}+c=\ln{(x+\sqrt{1+x^2})}+b;\,\, c,b \in R,\,\, x\in R\)
\(\int{\frac{1}{\sqrt{x^2-1}}}dx=\begin{cases} \mathrm{argcosh}\,{x}+c;\,\, |x|<1 \\ \ln{(x+\sqrt{x^2-1})}+c;\,\, |x|>1 \end{cases};\,\, c \in R\)
Přičemž platí tyto dvě vlastnosti:
- \(\int{f(x)+g(x)}dx=\int{f(x)}dx+\int{g(x)}dx\)
- \(\int{kf(x)}dx=k\int{f(x)}dx;\,\, k \in R\)
Rozbor
Při ověřování platnosti daných vztahů vycházíme z definice primitivní funkce, neurčitého integrálu a již známých derivací z úlohy: Základní derivace funkcí jedné reálné proměnné
Primitivní funkce:
Nechť f(x), F(x) reálné funkce reálné proměné, řekneme, že F(x) je primitivní funkce k f(x), jestliže platí: \[F^{\prime}(x)=f(x)\]
operací, jíž hledáme primitivní funkci, je operace opačná k derivování a zveme ji integrování, neboť funkce F(x) je určena až na konstantu c, neurčitý integrál zapisujeme takto:
\[\int{f(x)}dx=F(x)+c;\,\, c \in R\]Platnost uvedených vztahů nyní můžeme ověřit výpočtem.
\[F^{\prime}(x)=f(x)+c;\,\, c \in R\]