Led v kalorimetru

Úloha číslo: 353

V kalorimetru bylo 150 g vody o teplotě 6 °C, do které bylo přidáno 120 g ledu. Po vyrovnání teplot byl z kalorimetru vybrán a zvážen veškerý led. Voda byla v kalorimetru ponechána. Bylo zjištěno, že se hmotnost ledu zvětšila o 12 g. Jaká byla počáteční teplota ledu?

  • Nápověda

    Vzhledem k tomu, že se množství ledu zvýšilo, musela část vody, která byla původně v kalorimetru, zmrznout. Výsledným stavem je rovnovážná směs vody a ledu o teplotě 0 °C.

    Výměna tepla tedy probíhala takto:

    Led o neznámé teplotě odebíral teplo vodě. Led se ohříval, voda ochlazovala.

    V okamžiku, kdy voda dosáhla teploty tuhnutí (0 °C) led této teploty ještě nedosáhl a odebral vodě ještě další teplo, aby této teploty dosáhl. Díky tomu část vody zmrzla.

    V kalorimetrické rovnici tedy budeme mít

    teplo přijaté = teplo potřebné na ohřátí ledu z neznámé teploty na teplotu tání,

    teplo odevzdané = teplo odevzdané při ochlazení veškeré vody na teplotu tuhnutí a skupenské teplo tuhnutí části vody, která zmrzla.

  • Zápis

    mV = 150 g = 0,15 kg počáteční hmotnost vody
    tV = 6 °C Počáteční teplota vody:
    mL = 120 g = 0,12 kgpočáteční hmotnost ledu
    Δ m = 12 g = 0,012 kg  zvětšení hmotnosti ledu
    tL = ?počáteční teplota ledu

    Další potřebné hodnoty:

    tt = 0 °Cteplota tání ledu
    cL = 2,1 kJkg−1K−1 = 2100 Jkg−1K−1měrná tepelná kapacita ledu
    lt = 334 kJkg−1 = 3,34×105 Jkg−1měrné skupenské teplo tání ledu
    cv = 4,18 kJkg−1K−1 = 4180 Jkg−1K−1  měrná tepelná kapacita vody
  • Rozbor

    Ze zadání úlohy víme, že výsledným stavem je rovnovážný stav vody a ledu. To znamená, že výsledná teplota odpovídá teplotě tání vody. Na tuto teplotu se voda, která byla v kalorimetru, ochladila a přidaný led se naopak ohřál. Na svůj ohřev odebíral led teplo vodě, která teplo odevzdávala.

    Vzhledem k tomu, že v kalorimetru bylo na konci experimentu více ledu než na začátku, znamená to, že část vody zmrzla a při změně skupenství uvolnila teplo, které přijal led a využil ho na svůj ohřev. Jinými slovy: Teplo, které odevzdala voda při svém ochlazení na teplotu tání, nestačilo na to, aby se led na teplotu tání ohřál. Pro ustanovení rovnováhy je ale třeba, aby led i voda měly stejnou teplotu, tedy teplotu tání, proto led odebral vodě ještě další teplo, což se projevilo tím, že část vody zmrzla.

  • Řešení

    Při řešení vyjdeme z kalorimetrické rovnice, která říká, že teplo odevzdané teplejším tělesem se rovná teplu, které přijme těleso chladnější. V našem případě teplo odevzdává voda – snižuje svoji teplotu a potom její část zmrzne. Odevzdané teplo se tedy rovná:

    \[Q_{\mathrm{odevzdane}}=c_V m_V (t_V-t_t) + l_t \Delta m\]

    Chladnějším tělesem je led, který přijímá teplo, a ohřívá se na teplotu tání:

    \[Q_{\mathrm{prijate}}=c_L m_L (t_t-t_L) \]

    Obě tepla porovnáme:

    \[Q_{\mathrm{odevzdane}} = Q_{\mathrm{prijate}} \]

    \[c_V m_V (t_V-t_t) + l_t \Delta m = c_L m_L (t_t-t_L) \]

    a vyjádříme neznámou teplotu ledu:

    \[t_t - t_L = \frac{c_V m_V (t_V - t_T) + l_t \Delta m}{c_L m_L} \]

    \[t_L =t_t - \frac{c_V m_V (t_V - t_T) + l_t \Delta m}{c_L m_L} \]

    \[t_L =(0-\frac{4180 \cdot{0{,}15}\cdot{(6 - 0)} + 3{,}34 \cdot{10^5} \cdot{0{,}012}}{2100 \cdot{ 0{,}12}})\,\mathrm{^\circ C} \dot= -31 \,\mathrm{^\circ C}\]

  • Odpověď

    Led, který jsme přidali do kalorimetru, musel být podchlazený na teplotu asi −31 °C.

Úroveň náročnosti: Úloha vhodná pro studenty střední školy
K řešení úlohy je třeba vyhledat nějaké údaje.
Úloha na syntézu
Zaslat komentář k úloze